
Security Assessment

Channels
Nov 15th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Incorrect naming convention utilization

GLOBAL-02 : Proper usage of “public” and “external” type

CGD-01 : Centralization risk

CGE-01 : Centralization risk

CGE-02 : Potential subtraction overflow

CGE-03 : Logical issue of `depositAmount`

WCC-01 : Centralization risk

Appendix

Disclaimer

About

Channels Security Assessment

Summary
This report has been prepared for Channels to discover issues and vulnerabilities in the source code of the

Channels project as well as any contract dependencies that were not part of an officially recognized library.

A comprehensive examination has been performed, utilizing Static Analysis and Manual Review

techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices.
We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Channels Security Assessment

Overview

Project Summary

Project Name Channels

Description Channels

Platform BSC

Language Solidity

Codebase https://github.com/ChannelsFinance/ChannelsProtocolV2

Commit c1899219fac14a9ed6e4b67900d81986b160714b

Audit Summary

Delivery Date Nov 15, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 3 0 0 3 0 0

Medium 1 0 0 0 0 1

Minor 0 0 0 0 0 0

Informational 3 0 0 0 1 2

Discussion 0 0 0 0 0 0

Channels Security Assessment

https://github.com/ChannelsFinance/ChannelsProtocolV2

Audit Scope

ID File SHA256 Checksum

CGE CGatlingErc20Delegate.sol 3f220070d9c4cf8c8a85bcdd993046c8d3aa404f674c02f47a7ada819dd0a62c

CGD
CGatlingErc20Delegator.so
l

1b582979988c8214865c2e77b0ec73c87fd616102aa640f4d6cc37e2a86ccb7
8

SSC SpotSpell.sol c4e5d9caa2bef44f6c76a4205ac8eb914b112fe8f18a6930614cd12a793cfc5b

WCC WComptroller.sol
3a4d5dbcca9c24d19b7134fd3da74fd22b8aaf82a369cd2ec9c90d7c6001901
3

Channels Security Assessment

External Dependencies

The contract SpotSpellV1 is serving as the underlying entity to interact with third party UNISWAP protocol.

The contract CGatlingErc20Delegate is serving as the underlying entity to interact with third party

MdexRouter , USDT , SwapMining , CoinWindGatling , MdxToken and CoinWindToken protocols.

There are many files being imported for use but they are not in the scope of the audit. The scope of the

audit treats these files as black boxes and assumes their functional correctness.

Details of the associated file import are as follows：

contract WComptroller : ERC1155.sol , IERC20.sol , SafeERC20.sol , ReentrancyGuard.sol ,

ChannelsMath.sol , IERC20Wrapper.sol , IComptroller.sol , ICErc20.sol

contract SpotSpellV1 : IERC20.sol , SafeMath.sol , WhitelistSpell.sol , ChannelsMath.sol ,

IUniswapV2Factory.sol , IUniswapV2Router02.sol , IUniswapV2Pair.sol , IWComptroller.sol

contract CGatlingErc20Delegator : CTokenInterfaces.sol

contract CGatlingErc20Delegate : CCapableErc20Delegate.sol , EIP20Interface.sol

Details of the associated use are as follows：

contract WComptroller : comptroller.canSupplierIndex() , comptroller.claimCan() ,

contract SpotSpellV1 : doTransmitBNB() , doTransmit() , doBorrow() ,

bank.getCurrentPositionInfo() ,
bank.takeCollateral() , bank.putCollatera() ,

doRefundBNB() , doRefund() , bank.borrowBalanceCurrent() , doRepay()

We understand that the business logic of strategy and price oracle requires interaction with UNISWAP, etc.

We encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when

unexpected activities are observed.

The scope of the audit treats 3rd party entities as black boxes and assumes their functional correctness.

However, in the real world, 3rd parties can be compromised and this may lead to lost or stolen assets. In

addition, upgrades of 3rd parties can possibly create severe impacts, such as increasing fees of 3rd

parties, migrating to new LP pools, etc.

Channels Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01
Incorrect naming convention
utilization

Coding Style Informational Resolved

GLOBAL-02
Proper usage of “public” and
“external” type

Coding Style Informational Partially Resolved

CGD-01 Centralization risk
Centralization /
Privilege

Major Acknowledged

CGE-01 Centralization risk
Centralization /
Privilege

Major Acknowledged

CGE-02 Potential subtraction overflow Logical Issue Medium Resolved

CGE-03 Logical issue of depositAmount Logical Issue Informational Resolved

WCC-01 Centralization risk
Centralization /
Privilege

Major Acknowledged

Channels Security Assessment

7
Total Issues

Critical 0 (0.00%)

Major 3 (42.86%)

Medium 1 (14.29%)

Minor 0 (0.00%)

Informational 3 (42.86%)

Discussion 0 (0.00%)

GLOBAL-01 | Incorrect naming convention utilization

Category Severity Location Status

Coding Style Informational Global Resolved

Description

Solidity defines a naming convention that should be followed. In general, the following naming conventions

should be utilized in a Solidity file:

Constants should be named with all capital letters with underscores separating words

UPPER_CASE_WITH_UNDERSCORES

refer to https://solidity.readthedocs.io/en/v0.5.17/style-guide.html#naming-conventions

Examples:

Constants like :

contract CGatlingErc20Delegate : mdexRouter , SwapMining , CoinWindGatling， mdx , cow ,

reInvestPeriod ,

Recommendation

The recommendations outlined here are intended to improve the readability, and thus they are not rules,

but rather guidelines to try and help convey the most information through the names of things.

Alleviation

The team heeded our advice and resolved this issue in commit

2ff45ad0a664a14600e78555dde55534e262892d .

Channels Security Assessment

https://solidity.readthedocs.io/en/v0.5.17/style-guide.html#naming-conventions

GLOBAL-02 | Proper usage of “public” and “external” type

Category Severity Location Status

Coding Style Informational Global Partially Resolved

Description

“public” functions that are never called by the contract should be declared “external”. When the inputs are

arrays, “external” functions are more efficient than “public” functions.

Examples:

Functions like :

contract CGatlingErc20Delegator : emergencyWithdraw() , borrowBalanceStored() ,

exchangeRateCurrent() , exchangeRateStored() , accrueInterest() , _setComptroller() ,

_setInterestRateModel() ,

contract WComptroller : getUnderlyingToken() , balanceOfBatch() , setApprovalForAll() ,

safeTransferFrom() , safeBatchTransferFrom() , supportsInterface() ,

Recommendation

We recommend using the “external” attribute for functions never called from the contract.

Alleviation

The team heeded our advice and partially resolved this issue in commit

fdd5a639b7d5708dfdc31dbe259b7e59b77db9f2 .

Channels Security Assessment

CGD-01 | Centralization risk

Category Severity Location Status

Centralization / Privilege Major channels/CGatlingErc20Delegator.sol (83c4de8): 60~73 Acknowledged

Description

In the contract CGatlingErc20Delegator , the role admin has the authority over the functions shown in the

diagram below.

_setImplementation() : change the address of implementation to any addresses,

_setComptroller() : change the address of comptroller to any addresses,

_setPendingAdmin()/_acceptAdmin() : change the address of admin to any addresses,

_setInterestRateModel() : update the interest rate model`,

_setReserveFactor() : set a new reserve factor for the protocol,

Any compromise to the privileged account which has access to admin may allow the hacker to take

advantage of this.

Recommendation

We advise the client to carefully manage the privileged account's private key to avoid any potential risks of

being hacked.

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or smart-contract-based accounts with enhanced security practices, e.g.,

Multisignature wallets.

Indicatively, here is some feasible suggestions that would also mitigate the potential risk at the different

level in term of short-term and long-term:

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

Channels Security Assessment

The team acknowledged this issue and they will use a time-lock contract to help control the risk on their

own timeframe.

Channels Security Assessment

CGE-01 | Centralization risk

Category Severity Location Status

Centralization / Privilege Major channels/CGatlingErc20Delegate.sol (83c4de8): 269~280 Acknowledged

Description

In the contract CGatlingErc20Delegate , the role admin has the authority over the functions shown in the

diagram below.

Any compromise to the privileged account which has access to admin may allow the hacker to take

advantage of this.

Authenticated Role Function

State Variables

Function Calls
admin emergencyWithdraw

totalDeposited
queueAmount
emergencyWithdrawState

emergencyWithdraw
balanceOf

Recommendation

We advise the client to carefully manage the privileged account's private key to avoid any potential risks of

being hacked.

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or smart-contract-based accounts with enhanced security practices, e.g.,

Multisignature wallets.

Indicatively, here is some feasible suggestions that would also mitigate the potential risk at the different

level in term of short-term and long-term:

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Channels Security Assessment

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

The team acknowledged this issue and they will use a time-lock contract to help control the risk on their

own timeframe.

Channels Security Assessment

CGE-02 | Potential subtraction overflow

Category Severity Location Status

Logical Issue Medium channels/CGatlingErc20Delegate.sol (83c4de8): 226 Resolved

Description

According to the following codes, the comments "If limit = 0 , then there is no limit" explains

poolInfo.totalAmountLimit is 0 when there is no limit.

226226 uintuint depositAmount depositAmount == add_add_((amountamount,, queueAmount queueAmount));;

227227 uintuint depositAllowed depositAllowed == sub_sub_((poolInfopoolInfo..totalAmountLimittotalAmountLimit,, poolInfo poolInfo..totalAmounttotalAmount));;

228228 ifif ((depositAllowed depositAllowed >=>= 11)){{

229229 depositAllowed depositAllowed == sub_sub_((depositAlloweddepositAllowed,, 11));;

230230 }}

231231
232232 // If limit = 0 , then there is no limit// If limit = 0 , then there is no limit

233233 ifif((poolInfopoolInfo..totalAmountLimit totalAmountLimit !=!=00 &&&& depositAmount depositAmount >> depositAllowed depositAllowed)){{

234234 depositAmount depositAmount == depositAllowed depositAllowed;;

235235 }}

As a result, the subtraction sub_(poolInfo.totalAmountLimit, poolInfo.totalAmount) may overflow

and lead the call to fail.

Recommendation

We recommend adding logic to handle this condition.

Alleviation

The team heeded our advice and resolved this issue in commit

2ff45ad0a664a14600e78555dde55534e262892d .

Channels Security Assessment

CGE-03 | Logical issue of depositAmount

Category Severity Location Status

Logical Issue Informational channels/CGatlingErc20Delegate.sol (83c4de8): 226~243 Resolved

Description

According to the following codes, the depositAmount will be calculated by the depositAllowed when

poolInfo.totalAmountLimit is not 0.

226226 uintuint depositAmount depositAmount == add_add_((amountamount,, queueAmount queueAmount));;

227227 uintuint depositAllowed depositAllowed == sub_sub_((poolInfopoolInfo..totalAmountLimittotalAmountLimit,, poolInfo poolInfo..totalAmounttotalAmount));;

228228 ifif ((depositAllowed depositAllowed >=>= 11)){{

229229 depositAllowed depositAllowed == sub_sub_((depositAlloweddepositAllowed,, 11));;

230230 }}

231231
232232 // If limit = 0 , then there is no limit// If limit = 0 , then there is no limit

233233 ifif((poolInfopoolInfo..totalAmountLimit totalAmountLimit !=!=00 &&&& depositAmount depositAmount >> depositAllowed depositAllowed)){{

234234 depositAmount depositAmount == depositAllowed depositAllowed;;

235235 }}

236236
237237 ifif ((depositAmount depositAmount >> 00)){{

238238 uintuint beforeDeposit beforeDeposit ==
ICoinWindICoinWind((CoinWindGatlingCoinWindGatling))..getDepositAssetgetDepositAsset((underlyingunderlying,, addressaddress((thisthis))));;

239239 ICoinWindICoinWind((CoinWindGatlingCoinWindGatling))..depositdeposit((underlyingunderlying,, depositAmount depositAmount));;

240240 uintuint afterDeposit afterDeposit ==
ICoinWindICoinWind((CoinWindGatlingCoinWindGatling))..getDepositAssetgetDepositAsset((underlyingunderlying,, addressaddress((thisthis))));;

241241
242242 requirerequire((sub_sub_((afterDepositafterDeposit,, beforeDeposit beforeDeposit)) ==== depositAmount depositAmount,, "unexpected"unexpected
error occurred during deposit to CoinWind"error occurred during deposit to CoinWind"));;

243243 }}

The depositAllowed will minus 1 when sub_(poolInfo.totalAmountLimit, poolInfo.totalAmount) is

over 0. As ICoinWind(CoinWindGatling) is not in the scope of this audit. Whether this calculation is

correct is unknown.

We would like to confirm with the client if the current implementation aligns with the original project design.

Recommendation

We recommend stating for this.

Alleviation

Channels Security Assessment

The team heeded our advice and resolved this issue in commit

2ff45ad0a664a14600e78555dde55534e262892d .

Channels Security Assessment

WCC-01 | Centralization risk

Category Severity Location Status

Centralization / Privilege Major channels/WComptroller.sol (83c4de8): 68~74 Acknowledged

Description

In the contract WComptroller , the role admin has the authority over the functions shown in the diagram

below.

Any compromise to the privileged account which has access to admin may allow the hacker to take

advantage of this.

Authenticated Role Function State Variables

admin addBank tokenInfo

Recommendation

We advise the client to carefully manage the privileged account's private key to avoid any potential risks of

being hacked.

In general, we strongly recommend centralized privileges or roles in the protocol to be improved via a

decentralized mechanism or smart-contract-based accounts with enhanced security practices, e.g.,

Multisignature wallets.

Indicatively, here is some feasible suggestions that would also mitigate the potential risk at the different

level in term of short-term and long-term:

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

Channels Security Assessment

The team acknowledged this issue and they will use a time-lock contract to help control the risk on their

own timeframe.

Channels Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Channels Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Channels Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Channels Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Channels Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Channels Security Assessment

